
 SESSION 6
Color Images and their Components

AOLME Curriculum Level 1

GOALS

1. Represent grayscale and color images using RGB.

2. Manipulate real images (using a digital camera).

3. Open image files in Python and familiarize with AOLME Python
Library.

4. Link image creation with binary and hexadecimal numbers.

Activities:

6.1. Creating grayscale and color images using the WebApp

6.2. Connecting color images with RGB Hex and decimal values

6.3. Processing Real images with Python

Each activity includes 1 card. One side of the card is
in Spanish and on the back the same information is
in English. Each card has 4 quadrants, each
quadrant includes a task related to the main goal of
the activity. The numbers in the square on the left
describe the order to perform the tasks. The card
must be at the center of the table. Students need to
have access to it and take turns reading it. They can
read it in the language they feel more comfortable.

1 2

3 4

 2

6.1. CREATING GRAYSCALE AND COLOR
IMAGES USING THE WEB APP

Activity 1 Goal:

Analyze and create grayscale and color images using the “Binary Image
Generator” (binary colors, open play)

Resources for the Activity

1. Activity Card 6.1

2. Folder: /home/pi/AOLME/Session 6/ “index.html”

3. The “WebApp.html” online

4. Raspberry Pi and Monitor

5. Student journal

6. HTML color picker for more color code:

www.w3schools.com/colors/colors_picker.asp

Interactions

In this activity students are to think about the color components (RGB)of

images. It is important that they recall what they remember about color

creation and combination and use it as a way to transition into these ideas

related to color and computers. For example, yellow, red, and blue are seen

as primary colors. Or the basis to create other colors, here it is red, blue, and

green instead. Always use their experiences as a starting point and then

build on ideas. Throughout the activity provide a friendly environment,

supporting the participation of everyone. Notice who participates more or

less and pay attention to why it might be and act on it, so participation can be

more even from everyone. Support at all times the use of the language

(Spanish or English) that the students want to use.

http://www.w3schools.com/colors/colors_picker.asp

 3

Activity Card 6.1:

Recommended Steps for the Activity

1. Make sure the “Image Generator” / Web App online is set in grayscale or
color and highlight the choice students have to set up the ‘size’ of the matrix

2. Have students think about what colors need to be combined to create a
color; for example, white, magenta, or cyan

3. Motivate students to identify colors they like and come up with hex RGB
codes for that color.

4. Let students have fun creating images.

5. Have students debrief what they learned by experimenting with the image
generator and take notes in student journal.

Content:

The picture you see on your computer screen is made up of tiny blocks.
How can tiny blocks make so many colors?

 4

Have you ever mixed paint? Then you know you can get purple from
adding red to blue. These colors can combine to make all the colors of the
rainbow!

Let’s begin by looking at a black and white image.

Let’s see how computers do this!

 Grayscale Images

The image is made
up of little squares.
The squares are
called pixels.

If we zoom way out, our eyes

combine pixels into smooth lines!

Undertale “Annoying Dog”

http://pixelartmaker.com/art/1409799f9511b88.png

 5

Imagine you have a light switch with a dial and you can turn that dial up to
255 and down to 0. When the dial is at 0, the light is off and it is black.
When the dial is max, it is completely on and pure white.

This is what we call a grayscale. You can see here using what you learned
about hex, the scale for grayscale can also be represented using hex. From
00 (zero) to – FF (255).

With grayscale we can make more detail to the
pixels in our image by changing the values of the
pixels.

In computer programming, a positive integer
number is called an unsigned integer number.
Computers store an image’s pixels as binary

numbers.

0 255

A grayscale pixel, positive integer number from 0 to 255, is stored in the
computer with how many bits?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

When the computer reads

the matrix of numbers

below, we see Mario!

Here, Row is y and

Column is x to get (y,x).

Let’s see another image and all the grayscale pixel values that make the image.

http://www.stickaz.com/fr/community/7287-casque.html

 6

255 255 255 97 97 97 97 97 255 255 255 255 0
255 255 97 97 97 97 97 97 97 97 97 255 1
255 255 79 79 79 160 160 79 160 255 255 255 2
255 79 160 79 160 160 160 79 160 160 255 255 3
255 79 160 79 79 160 160 160 79 160 160 160 4
255 79 79 160 160 160 160 79 79 79 79 255 5
255 255 255 160 160 160 160 160 160 160 255 255 6
255 255 79 79 97 79 79 79 255 255 255 255 7
255 79 79 79 97 79 79 97 79 79 79 255 8
79 79 79 79 97 97 97 97 79 79 79 79 9
160 160 79 97 151 97 97 151 97 79 160 160 10
160 160 160 97 97 97 97 97 97 160 160 160 11
160 160 97 97 97 97 97 97 97 97 160 160 12
255 255 97 97 97 255 255 97 97 97 255 255 13
255 79 79 79 255 255 255 255 79 79 79 255 14
79 79 79 79 255 255 255 255 79 79 79 79 15

0 1 2 3 4 5 6 7 8 9 10 11

The computer sees Mario’s pixels as many numbers in matrix.
https://mspremiseconclusion.wordpress.co

m/2010/03/06/its-a-me-mario/

Computers convert a matrix of pixels

to display images. Each pixel is

defined using a hexadecimal number.

 7

6.2. CONNECTING COLOR IMAGES WITH
RGB HEX AND DECIMAL VALUES

Activity 2 Goals:

Explore how Hex and decimal values are linked to pixel RGB values in color
/grayscale images

Resources for the Activity

7. Activity Card 6.2

8. Folder: /home/pi/AOLME/Session 6/

9. The “WebApp.html” online

10. Raspberry Pi and Monitor

11. Student journal

12. HTML color picker for more color code:

www.w3schools.com/colors/colors_picker.asp

 Interactions:

Throughout the activity provide a friendly environment, supporting the

participation of everyone. Notice who participates more or less and pay

attention to why it might be and act on it, so participation can be more even

from everyone. Support at all times the use of the language (Spanish or

English) that the students want to use. Support recalling of hex and binary

with the purpose of generating images. Highlight that the idea is not to

convert to hex accurately but to understand base 16 and it differs from base

2 and 10 systems, but also that hex relate to the creation and naming of

colors through the combination the basic digital color components.

http://www.w3schools.com/colors/colors_picker.asp

 8

Activity Card 6.2:

Recommended Steps for the Activity

1. Identify that RGB works at the pixel level and it can be changed.

2. Highlight how a grayscale pic is only one frame, but color pics include
three frames, RGB, in different tones each frame, like the Mario
illustration.

3. Practice binary and hex numbers connected to colors. If needed, use
materials from Session 5. Numbers could be corroborated through
Python.

4. Have students debrief what they learned by experimenting and take
notes of that on journal.

5. Activity 6.1 was to think about the components or colors to be
combined to create another color, but this activity is to think about the
RGB numerical values associated to that color combination to create
new colors.

Content:

 9

Math exercises

 Color Images

Remember the light switch example? Grayscale colors happen when we
turn on the three colors Red, Blue, and Green and set them as the same
value. If they are all 255 or FF we get white, if they are all 0 or 00 we get
black!

0 255

Color Pixel: [R G B]

0 255

0 255

R :

G :

B :

Convert the following decimal grayscale values into binary and then
into hexadecimal. How many digits do you need for the hexadecimal
number?

Decimal

number

Binary number Hexadecimal

number
power 27 26 25 24 23 22 21 20
number

128 64 32 16 8 4 2 1

76

109

253

17

94

0 255

Color Pixel: [R G B]

0 255

0 255

R :

G :

B :

Hexadecimal Color Pixel: “RRGGBB” Decimal Color Pixel: [R, G, B]

f

f
ff

FF

FF

FF

0

0

0

 10

But why do you not see blocks of color on your monitor? It uses subpixels.
Every pixel you see in the computer has a red, blue and green band of
color.

Look closely, can you see the three bands of color? The zoomed out text

 looks gray!

In this image, inside the black squares are
pixels, and the stripes of R, G, and B are
subpixels!

Your monitor is made of little tiny subpixels

just like these!

Grayscale pixels have values between 0 and 255 and are stored using 8
bits. Color pixels are 3 values, each between 0 and 255. How many bits do
you think a computer needs to store one value?

…………………………………………………………………………………………

…………………………………………………………………………………………

…………………………………………………………………………………………

https://en.wikipedia.org/wiki/Subpixel_rendering#/media/File:Subpixel-rendering-RGB.png

 11

Color images are called RGB images because the pixels are made from
combinations of the three colors.

Like grayscale, each color component has its own matrix. Remember
the grayscale Mario? Now we will look at his three color components.

255 255 255 0 0 0 0 0 255 255 255 255 0

255 255 0 0 0 0 0 0 0 0 0 255 1

255 255 6 6 6 45 45 6 45 255 255 255 2

255 6 45 6 45 45 45 6 45 45 255 255 3

255 6 45 6 6 45 45 45 6 45 45 45 4

255 6 6 45 45 45 45 6 6 6 6 255 5

255 255 255 45 45 45 45 45 45 45 255 255 6

255 255 6 6 0 6 6 6 255 255 255 255 7

255 6 6 6 0 6 6 0 6 6 6 255 8

6 6 6 6 0 0 0 0 6 6 6 6 9

45 45 6 0 19 0 0 19 0 6 45 45 10

45 45 45 0 0 0 0 0 0 45 45 45 11

45 45 0 0 0 0 0 0 0 0 45 45 12

255 255 0 0 0 255 255 0 0 0 255 255 13

255 6 6 6 255 255 255 255 6 6 6 255 14

6 6 6 6 255 255 255 255 6 6 6 6 15

1 2 3 4 5 6 7 8 9 10 11 12

255 255 255 37 37 37 37 37 255 255 255 255 0

255 255 37 37 37 37 37 37 37 37 37 255 1

255 255 82 82 82 184 184 82 184 255 255 255 2

255 82 184 82 184 184 184 82 184 184 255 255 3

255 82 184 82 82 184 184 184 82 184 184 184 4

255 82 82 184 184 184 184 82 82 82 82 255 5

255 255 255 184 184 184 184 184 184 184 255 255 6

255 255 82 82 37 82 82 82 255 255 255 255 7

255 82 82 82 37 82 82 37 82 82 82 255 8

82 82 82 82 37 37 37 37 82 82 82 82 9

184 184 82 37 179 37 37 179 37 82 184 184 10

184 184 184 37 37 37 37 37 37 184 184 184 11

184 184 37 37 37 37 37 37 37 37 184 184 12

255 255 37 37 37 255 255 37 37 37 255 255 13

255 82 82 82 255 255 255 255 82 82 82 255 14

82 82 82 82 255 255 255 255 82 82 82 82 15

1 2 3 4 5 6 7 8 9 10 11 12

255 255 255 255 255 255 255 255 255 255 255 255 0

255 255 255 255 255 255 255 255 255 255 255 255 1

255 255 148 148 148 248 248 148 248 255 255 255 2

255 148 248 148 248 248 248 148 248 248 255 255 3

255 148 248 148 148 248 248 248 148 248 248 248 4

255 148 148 248 248 248 248 148 148 148 148 255 5

255 255 255 248 248 248 248 248 248 248 255 255 6

255 255 148 148 255 148 148 148 255 255 255 255 7

255 148 148 148 255 148 148 255 148 148 148 255 8

148 148 148 148 255 255 255 255 148 148 148 148 9

248 248 148 255 255 255 255 255 255 148 248 248 10

248 248 248 255 255 255 255 255 255 248 248 248 11

248 248 255 255 255 255 255 255 255 255 248 248 12

255 255 255 255 255 255 255 255 255 255 255 255 13

255 148 148 148 255 255 255 255 148 148 148 255 14

148 148 148 148 255 255 255 255 148 148 148 148 15

0 1 2 3 4 5 6 7 8 9 10 11

Re

Blu

Gree

Can you find the [R,G,B] value of a pixel that colors Mario’s hat and

suspenders? (Hint: Look in the first row!)

The computer sees 1 matrix for each of the R,G,B

components.

 12

Teamwork
Let’s take a look at the pixels on your monitor! Get a camera and take a very
close picture of the screen. Can you see the tiny squares (pixels) in your
picture?

Let’s look at some colored beams of light.

Discuss with your classmates

Let’s look at the primary colors:

Red Green Blue

“FF0000” = (255, 0, 0) “00FF00” = (0, 255, 0) “0000FF” = (0, 0, 255)

 [R , G , B] [R , G , B] [R , G , B]

When we mix Red and Blue circles together we get a new color. This is the same
as combining Red (255,0,0) and Blue (0,0,255) to get (255, 0, 255) as the result,
which is the same as “FF00FF” in hex! This color is called “Magenta”.

What is the (y,x) location of a hat pixel? What is the
[R,G,B] value of the pixel? What is the hex value
(RRGGBB)?

 ………………………………………………………

https://openclipart.org/detail/246218/additive-color-

blending

 13

Now come up with the other two colors where red and green mix and where blue
and green mix.

 Red + Green Green + Blue

RGB

Hex

Name

 14

6.3. PROCESSING REAL IMAGES
WITH PYTHON

Activity 3 Goal:

Process real-life images through the AOLME library by defining image
Coordinates plane (coordinates, grouping, blocks, share and modify-’debug’),
arrays, and ranges with Python (debug, program, share and modify-DMI)

Resources for the Activity

1. Activity Card

2. Digital Camera per group

3. USB drive per group

4. AOLME.py folder (head.py file)

5. Raspberry Pi and Monitor

6. Student journal

Interactions:

Provide a problem-solving environment around the use of images so that the

codes become more fun. Let students make decisions about what images to

take so that they feel excited and motivated about making changes to the

images. Perhaps they want to be in the image? Let them take the lead. If

needed leave the room and go outside to take pics of building, nature or

themselves.

 15

Activity Card 6.3:

Recommended Steps for the Activity

1. Let the team take initiative to decide where to take the picture.

2. Make sure name of the image is remembered by the group and saved

onto both AOLME.py folder and onto the USB to share with another

group.

3. In point 2, let students focus on the code syntax and meaning by

experimenting and inferring what happens with each code.

4. Have them take notes on journal on what they discover.

5. In 2d emphasize the use of degrees, have them recall what they know

and make connections.

6. In point 3, make sure that the teams change picture and are able to

name and use arrays, ranges, and arguments. And that RGB

components are changed.

7. Be creative and funny in point 4.

 16

Content:

Project: Our Team Picture!

Teamwork
For this project you need to take a picture with your team. Go find a bright
location around the school with lots of colors and take your picture. Do a

silly pose or have some fun!

 Using the AOLME Image Library
For this part we will use this example image, but you will use your team

picture.

Meet Terabyte,
Pixel and

Sopapilla! Do you
know what a
Terabyte is?

How many bits
are in a byte?

How many bytes
are in a Terabyte?

Why do you think
the gray kitty is
named Pixel?

 17

Computer Time!
Playing with colors.

Put your group picture in the same folder with AOLME.py and open a
python session. Make sure you rename it to something easy!

First we need to read the image so the computer can read and show the
matrices.
To do so, open IDLE and make a new file.

We will type the read_img() function to do that, and give it the name of
the picture you took. We need to set a variable, this is any name of the file
you want to call (that is ‘pets.jpg’).

The next function in the file will be show_comps(). For this

function to work we need to pass our pets image to it.

When we put a variable between the parentheses in a function we call this
‘passing a variable’. Anything passed to a function is called a function’s
arguments.

Let’s look at the RGB components in your group picture!

1

2

3
=
3

4

 18

Now we are ready to run the program, save the file and name it, then

go to the Run menu and pick ‘Run Module’. You can also just hit the f5

key!

Here the results, what did you get?

Discuss with your classmates.

Re

Blue Gree

5

 19

 Do you see black areas in any of the component images? Why do you think this

happened? Which one is the darkest component? Did you see something similar

in group images?

Let’s use more of the functions in the library on your image!

There are lots of things you can do with your image. The AOLME library has

easy functions you can use to change or view the picture.

How do you show the image that’s stored in a variable?

We use the function show_img() and pass our variable to it to view it.

Teamwork
Save your team picture with the filename “secret_image_yourteamname.jpg”
and put it on a thumbdrive. Go to another group and trade images with

them. Take their secret image from the thumbdrive and use the AOLME library to
see their picture!

Now that you can read and view the images, let’s do something fun.

You know how to read the picture into a variable, so let’s use

this and try some challenges!

The function img_size() gives the

number of rows and columns in the

image matrix.

Here’s how many rows and

columns are in the pets picture!

 20

Is your image a little crooked? There’s a function for that too, it’s

rotate_img()!

Say you really like a color and quickly want to know what the RGB value is of

the color. You can get the value by using the get_pixel() function.

If 180 degrees flipped the image, how
many degrees do you need to rotate a

sideways image?

How many bits are in a byte?

How many bytes are in a Terabyte?

Why do you think the gray kitty is
named Pixel?
Wait! rotate_img(pets,180)

The function rotate_img() has two arguments. The first one refers to the

variable ‘pets’ or the picture and second argument is an integer number

which says how many degrees we want the function to rotate the image by.

Pass the [y,x] location of the pixel

to the function and print the

variable.

The function will print the [R,G,B]

value of the pixel! Convert this to

hex!

 21

But if we don’t like that color we can instead change it to something we do

want using put_pixel()!

Notice now we need three arguments to change the pixel. The first argument is

the image, then the location we want to put the pixel, and last we need to give

values [R,G,B] for a color.

Say you want to add an entire block of pixels to the image to cover up a part

you don’t like. There is a function for this called put_pixel_group(). Now

we need to specify which range of pixels we want to put the block in instead

of a single pixel like put_pixel(). We are going to use a second variable

called “pixel_range” to do this.

Pass the [y,x] location of the pixel

to the function and print the

variable.

This time we check to make sure

the pixel color changed, it did!

Something’s different!! We did not show the image here! Can you
guess why we have to check the pixel with get_pixel()?

When we want to make a new variable we name it first then

make it equal to something new. To set the range, we want

to pick the first row pixel, the last row pixel, the first

column pixel then the last column pixel and put them in a

list called an array.

 22

What happened when you used the function put_pixel_group()? The top

500x500 pixel square filled with black pixels!

Remember, the second argument in put_pixel_group() is a range. It can be

passed directly or through a variable. The range must be in the format of

[y1,y2,x1,x2]. This format is called an array.

To save the new image after making changes, store the changed image using

the save_img() function. When the image changes, it must be saved into a

variable first or the changes will be lost. This is done by setting the new

variable equal to the function. A copy of the image can be saved with a

different name using this function.

First

argumen

Second

argumen

Third

argumen

Array

Set up the pixel range and pass it to the

function put_pixel_group()don’t

forget to add the color in [R,G,B] values.

 23

Now let’s look at some advanced functions. First, recall the lights and how

mixing only two of the three colors had a cool effect on the image. We can see

this effect using the function get_comps(). This means “get all

components”. This function has a return value which means to see the results

we need to save the output into a variable. The return value type is special

because it is an array like we’ve seen before. Let’s try it!

Tell the function to save the variable

pets as ‘my_pets.jpg’. Don’t forget the

file type (.jpg)!

Check your folder!
Now there is a file
called pets.jpg and a
file called
my_pets.jpg!

Each variable inside of the return value is a different image,

then we save every component as the name ‘color.jpg’.
Do you remember
how to get cyan,

yellow, and
magenta channels

using R,G,B?

How would you
show the

components
instead of saving

them?

 24

If you want to cut or crop the image or it has something extra that you don’t

want to see, you can use the crop_img() function.

Now we have a good picture of Sopapilla to use with functions or share with
friends!

The range must still be in the array format of [y1,y2,x1,x2]. The best practice is

to save this as a variable. Warning: Don’t name your variable range, python has

reserved that name for another purpose, name it ranges or pixel_range or

something else.

Here are some optional functions to explore.

2

Do you remember when you learned the difference between a grayscale image

and an R,G,B image? Let’s make the image gray and look at some of the above

functions.

Give crop_img() return value a new variable to

keep the changes. The ranges are defined the same

as put_pixel().

Give the function a new variable

and use the new variable.
Let’s try some exercises!

Repeat the functions from
before with your grayscale

image.

 25

Discuss with your classmates

 Which functions had a different output?

 Why is the output different?

 Why do you think put_pixel() didn’t work correctly?

